piggyBac Transposon-Mediated Transgenesis in the Apicomplexan Parasite Eimeria tenella
نویسندگان
چکیده
piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5' and 3' ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac.
منابع مشابه
Immunoproteomic analysis of the protein repertoire of unsporulated Eimeria tenella oocysts
The apicomplexan protozoans Eimeria spp. cause coccidioses, the most common intestinal diseases in chickens. Coccidiosis is associated with significant animal welfare issues and has a high economic impact on the poultry industry. Lack of a full understanding of immunogenic molecules and their precise functions involved in the Eimeria life cycles may limit development of effective vaccines and d...
متن کاملEimeripain, a Cathepsin B-Like Cysteine Protease, Expressed throughout Sporulation of the Apicomplexan Parasite Eimeria tenella
The invasion and replication of Eimeria tenella in the chicken intestine is responsible for avian coccidiosis, a disease that has major economic impacts on poultry industries worldwide. E. tenella is transmitted to naïve animals via shed unsporulated oocysts that need contact with air and humidity to form the infectious sporulated oocysts, which contain the first invasive form of the parasite, ...
متن کاملIdentification and Characterization of Eimeria tenella Apical Membrane Antigen-1 (AMA1)
Apical membrane antigen-1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. In this study, a full-length cDNA of AMA1 was identified from Eimeria tenella (Et) using expressed sequence tag and the rapid amplification of cDNA ends technique. EtAMA1 had an open reading frame of 1608 bp encoding a protein of 535 amino acids. Qua...
متن کاملA Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites
Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species ...
متن کاملCharacterization of monoclonal antibodies that recognize the Eimeria tenella microneme protein MIC2.
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme pro...
متن کامل